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Abstract

We give the �rst examples of smooth Fano and Calabi–Yau varieties violating
the (narrow) canonical strip hypothesis. They are given by moduli spaces of rank 2
bundles with �xed odd-degree determinant on curves of su�ciently high genus,
hence our Fano examples have Picard rank 1, index 2, are rational, and have moduli.
The hypotheses also fail for several other closely related varieties.

1 The canonical strip hypotheses

Associated to a polarisation of a smooth projective variety X we can consider its
Hilbert polynomial. The complex roots of this polynomial satisfy a symmetry property
induced by Serre duality. In [7] Golyshev introduced further constraints on these roots:
the (narrow) canonical strip hypothesis. The motivation for these restrictions comes
from Yau’s inequalities on characteristic numbers. At the end of this introduction we
give a quick summary of the positive results regarding these hypotheses.

To state (and generalise) the canonical strip hypothesis we will use the following
de�nition.
De�nition 1. A pair (X ,H ) of a normal variety and an ample line bundle is said to be
monotone of index r if

(1) c1 (X ) = �KX ⌘ rH ,

where the symbol ⌘ denotes numerical equivalence of divisors.

The case of H = �KX (resp. H = KX ) as considered in [7] for a Fano variety (resp. vari-
ety with KX ample) has index 1 (resp. �1). We will also consider polarised Calabi–Yau
varieties, for which r = 0.

By Serre duality we have that

(2) � (nH ) = (�1)dimX � (�(r + n)H ).

Hence the roots of theHilbert polynomial are symmetric around the line�r/2. Golyshev
introduced the following further constraints on the real parts of the roots of the Hilbert
polynomial.
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De�nition 2. Let X be a smooth projective variety, and H an ample line bundle, such
that (X ,H ) is monotone polarised of index r . Let �1, . . . ,�dimX be the real parts of the
roots of the Hilbert polynomial associated to H . Then we say that X satis�es

(CL) the canonical line hypothesis if

(3) �i = r/2,

(NCS) the narrow canonical strip hypothesis if r  0 and

(4) �i 2

�r + r

dimX + 1
,� r

dimX + 1

�

if r � 0, and

(5) �i 2
 �r
dimX + 1

,�r � r

dimX + 1

�

otherwise,

(CS) the canonical strip hypothesis if r  0 and

(6) �i 2 [�r , 0]

if r � 0 and

(7) �i 2 [0,�r ]

otherwise,

for all i = 1, . . . , dimX .

It is clear that

(8) (CL) ) (NCS) ) (CS).

If X is a Fano variety, and Y ,! X is a (normal) anticanonical divisor, we can consider
themonotone polarised variety (Y ,�KX |Y ). By [7, theorem 4] we know that if (X ,�KX )
satis�es (CS) then (Y ,�KX |Y ) satis�es (CL).
The goal of this paper is to give the �rst examples of

1. Fano varieties which violate the (narrow) canonical strip hypothesis;

2. embedded Calabi–Yau varieties which violate the canonical line hypothesis.

The question whether such varieties exist was raised by Golyshev in [7, §5.A]. The
examples we give are moduli spaces MC (2,L) of vector bundles of rank 2 with �xed
determinant L of odd degree on a curve C of genus � � 2.
Theorem 3.We have the following examples violating the (narrow) canonical strip
hypothesis.

• Let � � 8, then MC (2,L) does not satisfy the narrow canonical strip hypothesis.

• Let � � 10, then MC (2,L) does not satisfy the canonical strip hypothesis.
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• Let � � 11 then an anticanonical Calabi–Yau hypersurface inside MC (2,L) does
not satisfy the canonical line hypothesis1.

Observe that there exist smooth anticanonical hypersurfaces, by the very ampleness
of � [3] and the Bertini theorem.

In section 2 we give the proof of this theorem, and discuss related constructions, giving
more families of examples vilating Golyshev’s hypotheses. Before we do this we give
an overview of the positive results in the literature. In [7] Golyshev explains how

1. the canonical line hypothesis holds for smooth projective curves (with the elliptic
curve being embedded in P2);

2. the narrow canonical strip hypothesis holds for del Pezzo surfaces and surfaces of
general type, and the canonical line hypothesis holds for embedded K3 surfaces;

3. the narrow canonical strip hypothesis holds for Fano 3-folds and minimal three-
folds of general type.

Moreover it is explained how all Grassmannians (not just projective spaces) satisfy
the narrow canonical strip hypothesis.

In [8] Manivel shows that for G a simple a�ne algebraic group and P a maximal
parabolic subgroup

1. G/P satis�es the tight2 strip hypothesis;

2. Fano complete intersections in G/P satisfy the tight canonical strip hypothesis;

3. general type complete intersections inG/P satisfy the canonical line hypothesis;

4. Calabi–Yau complete intersections in G/P satisfy the canonical line hypothesis.

Miyaoka’s celebrated pseudo-e�ectivity theorem [9] implies that the embedded canon-
ical line hypothesis holds for smooth Calabi–Yau threefolds3.

Another case that can be checked is that of smooth toric Fano n-folds, for n = 4, . . . , 7.
By [5, proposition 9.4.3] we have that the Hilbert polynomial for the anticanonical
bundle is the Ehrhart polynomial of the moment polytope. In [1] we have computed
these Ehrhart polynomials, based on the classi�cation of the toric Fano polytopes
up to dimension 7. It turns out there are no examples violating the canonical strip
hypothesis. In other words, we can add the following proposition to the list of positive
examples.
Proposition 4. Let X be a smooth toric Fano variety of dimension at most 7. Then X
satis�es the canonical strip hypothesis4.

The maximal valuemd of the real parts of the roots of the Hilbert polynomials for
1Hence for � = 10 we have that MC (2, L) violates the canonical strip hypothesis, yet an anticanonical

Calabi–Yau hypersurface still satis�es the embedded canonical line hypothesis. See also table 1 for more
information.

2A strengthening of the narrow canonical strip hypothesis for Fano varieties involving the index ıX
of X , i.e. with the notation of de�nition 2 one asks for �i 2 [�1 + 1/ıX  �1/ıX , when H = �KX .

3As well as for threefolds with numerically trivial canonical bundle, and terminal Gorenstein singularities
that admit crepant resolution.

4The narrow canonical strip hypothesis is violated starting in dimension 4.
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smooth toric Fano varieties of dimension d is given as

(9)

m2 = �0.3333333333 . . .
m3 = �0.2500000000 . . .
m4 = �0.1394448724 . . .
m5 = �0.0868988066 . . .
m6 = �0.0566708554 . . .
m7 = �0.0354049073 . . .

Acknowledgements The �rst and third author were supported by the Max Planck
Institute for Mathematics in Bonn. The second author was supported by the Hausdor�
Center for Mathematics, during the trimester program “Periods in Number Theory,
Algebraic Geometry and Physics”.

2 Examples violating the hypotheses

An interesting class of Fano varieties is given by moduli spaces of vector bundles on a
curve. We will restrict ourselves to the case of rank 2. Let L be a line bundle of odd
degree on a smooth projective curve C of genus �. Then the moduli space MC (2,L) of
rank 2 bundles with determinant L is a smooth projective variety of dimension 3� � 3,
of rank 1 and index 2, i.e. PicMC (2,L) � Z�, and �MC (2,L) � �⌦�2, see [6].

To compute the Hilbert polynomial we can use the celebrated Verlinde formula, which
gives an expression for dimk H0 (MC (2,L),�⌦k ), see [2, 10] for a survey. It reads

(10) dimk H0 (MC (2,L),�⌦k ) = (k + 1)��1
2k+1X

j=1

(�1) j�1
sin2��2 j�

2k+2

.

Rather than this version of the Verlinde formula we will use an alternative form, taken
from [10]. Namely item (x) in theorem 1 of op. cit. gives the formula

(11) dimk H0 (MC (2,L),�⌦k ) =
2� detMr,sQ�

j=1 (2j )!

where the matrix (Mr,s )r,s=0, ...,��1 is given by

(12) Mr,s =
8><>:
1 r = 0
(k + 1 + r )2s+2 � (k + 1 � r )2s+2 r � 0

.

The bene�t of using this expression is that it can be computed in an exact fashion in
computer algebra.

Using this formula one computes the �rst 3� coe�cients of the Hilbert series, and from
this we can obtain the Hilbert polynomial ofMC (2,L) with respect to�, i.e. we consider
the monotone polarisation given by H = � for MC (2,L). Two implementations of the
computations (one in Pari/GP, another in Sage) can be found at [4]. The implementation
computes the maximum of the real parts of the complex roots of the Hilbert polynomial,
so we are interested in knowing when these are negative, but close to 0, or positive.
From these computations we get theorem 3 as in the introduction.
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Remark 5. The values in the column labeled MC (2,L) in table 1 suggest an interesting
convergence behaviour for the maximum of the real part of the complex roots of the
Hilbert polynomial. More generally one can compute that the collection of all roots
of the Hilbert polynomial seems to exhibit a pattern where the limiting behaviour
involves the complex hull of the roots for increasing genera. A visualisation of this
is given in �g. 1. In the picture we have omitted the root at t = �1, which in all the
examples we computed is of multiplicity ��1, but we have no proof of this. We suggest
these questions for future work.

Related constructions Besides an anticanonical Calabi–Yau hypersurface con-
structed out ofMC (2,L) there are other Fano and Calabi–Yau varieties we can construct
out of it. These are

Fano1 the 3� � 4-dimensional Fano variety given by a linear section;

Fano2 the 3� � 3-dimensional Fano variety given by a double cover branched
in 2�;

CY2 the 3� � 5-dimensional Calabi–Yau variety given by a linear section of codi-
mension 2;

CY3 the 3� � 3-dimensional Calabi–Yau variety given by a double cover branched
in 4�;

CY4 the 3� � 3-dimensional Calabi–Yau variety given by the cone over the embed-
ding given by �, intersected with a cubic hypersurface;

CY5 the 3� � 3-dimensional Calabi–Yau variety given by the join with a line
intersected with two quadric hypersurfaces;

CY6 the 3� � 3-dimensional Calabi–Yau variety given by a smoothing of a linear
section of a join with an elliptic curve of degree 1.

For all of these the canonical strip (resp. line) hypothesis eventually fails, as checked
in [4]. In table 1 we have collected the maximum over the real parts of the complex
roots of the Hilbert polynomial, where the columns are labelled as in this remark. The
Calabi–Yau variety denoted CY1 is the anticanonical section of MC (2,L) as considered
in theorem 3.

We have not found counterexamples with ample canonical bundle: the canonical line
hypothesis was satis�ed for all constructions we considered.
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Fano Calabi–Yau
� Fano1 Fano2 MC (2,L) CY1 CY2 CY3 CY4 CY5 CY6

2 �0.5 �0.5 �1 0 0 0 0 0 0
3 �0.5 �0.5 �0.706 640 539 5 0 0 0 0 0 0
4 �0.5 �0.5 �0.477 001 948 8 0 0 0 0 0 0
5 �0.289 050 709 8 �0.313 172 706 4 �0.309 498 927 2 0 0 0 0 0 0
6 �0.179 205 632 6 �0.206 390 561 0 �0.191 196 178 0 0 0 0 0 0 0
7 �0.104 714 434 0 �0.111 984 402 5 �0.108 353 678 0 0 0 0 0 0 0
8 �0.050 040 882 5 �0.049 987 964 3 �0.050 040 972 2 0 0 0 0 0 0
9 �0.008 887 509 0 �0.008 135 607 4 �0.008 509 422 5 0 0 0 0 0 0
10 0.021 353 423 8 0.021 620 187 9 0.021 486 936 1 0 0.037 953 952 1 0.038 169 563 0 0.038 276 745 3 0.038 383 517 2 0.038 061 966 6
11 0.043 439 254 9 0.043 469 996 3 0.043 454 600 3 0.061 436 909 1 0 0 0 0 0
12 0.059 750 706 4 0.059 741 223 1 0.059 745 965 2 0.039 947 163 2 0.073 179 436 1 0.073 174 523 6 0.073 172 066 9 0.073 169 609 9 0.073 176 980 0
13 0.071 960 067 7 0.071 955 094 1 0.071 957 581 0 0.080 107 739 3 0.067 567 715 6 0.067 562 078 2 0.067 559 258 8 0.067 556 439 1 0.067 564 897 1
14 0.081 189 939 6 0.081 189 060 3 0.081 189 499 9 0.081 930 543 0 0.084 573 517 3 0.084 573 049 0 0.084 572 814 8 0.084 572 580 7 0.084 573 283 1
15 0.088 212 105 2 0.088 212 142 3 0.088 212 123 8 0.087 924 527 3 0.090 774 334 4 0.090 774 282 6 0.090 774 256 7 0.090 774 230 8 0.090 774 308 5
16 0.093 573 807 3 0.093 573 864 6 0.093 573 835 9 0.096 525 889 1 0.091 120 060 4 0.091 120 123 6 0.091 120 155 1 0.091 120 186 7 0.091 120 092 0
17 0.097 671 125 5 0.097 671 138 7 0.097 671 132 1 0.094 622 277 9 0.100 367 508 4 0.100 367 521 1 0.100 367 527 5 0.100 367 533 9 0.100 367 514 8
18 0.100 794 936 1 0.100 794 936 8 0.100 794 936 5 0.102 973 719 9 0.098 184 901 6 0.098 184 901 9 0.098 184 902 0 0.098 184 902 2 0.098 184 901 8
19 0.105 885 924 9 0.105 886 335 8 0.105 886 130 4 0.105 101 938 1 0.107 002 849 0 0.107 003 186 0 0.107 003 354 6 0.107 003 523 1 0.107 003 017 5
20 0.114 639 348 4 0.114 639 352 4 0.114 639 350 4 0.114 407 509 1 0.115 050 095 7 0.115 050 115 0 0.115 050 124 7 0.115 050 134 4 0.115 050 105 3
21 0.121 885 049 8 0.121 885 016 4 0.121 885 033 1 0.122 573 559 5 0.121 199 207 4 0.121 199 171 2 0.121 199 153 2 0.121 199 135 1 0.121 199 189 3
22 0.127 891 132 5 0.127 891 119 9 0.127 891 126 2 0.127 282 948 0 0.128 469 880 7 0.128 469 868 6 0.128 469 862 5 0.128 469 856 4 0.128 469 874 7
23 0.132 872 201 6 0.132 872 199 7 0.132 872 200 6 0.133 234 607 5 0.132 497 558 6 0.132 497 556 6 0.132 497 555 6 0.132 497 554 6 0.132 497 557 6
24 0.137 001 216 5 0.137 001 216 7 0.137 001 216 6 0.136 830 612 4 0.137 171 671 4 0.137 171 671 6 0.137 171 671 7 0.137 171 671 9 0.137 171 671 5
25 0.140 418 474 5 0.140 418 474 7 0.140 418 474 6 0.140 462 979 8 0.140 376 163 0 0.140 376 163 2 0.140 376 163 3 0.140 376 163 4 0.140 376 163 1

dim 3� � 4 3� � 3 3� � 3 3� � 4 3� � 5 3� � 3 3� � 3 3� � 3 3� � 3

Table 1: Maximum value of real parts of complex roots of Hilbert polynomial
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Figure 1: Complex roots of Hilbert polynomials of MC (2,L), for � = 2, . . . , 30
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